

PLATINUM: Semi-Supervised Model Agnostic Meta-Learning using Submodular Mutual Information

Changbin Li*, Suraj Kothawade*, Feng Chen, Rishabh Iyer

INTRODUCTION

- Unlabeled examples could also be used to boost the performance in semi-supervised learning. Similarly can we use unlabeled information in semi-supervised few shot learning (SSFSL)?
- Current SSFSL: 1) transfer-learning based (pretrained features); 2) meta-learning based.
- Submodular information measures have been used as acquisition functions for active learning in scenarios with class imbalance, redundancy and OOD data.
- In this work, we propose PLATINUM (semi-suPervised mode**L** Agnostic me**T**a learn**I**ng usi**N**g s**U**bmodular Mutual information), a novel semi-supervised model agnostic meta learning framework that uses the submodular mutual information (SMI) functions to boost the performance of FSC.
- We study the performance of PLATINUM in two scenarios: 1) where the unlabeled data points belong to the same set of classes as the labeled set of a certain episode. 2) where there exist out-of-distribution classes that do not belong to the labeled set.

MOTIVATION and **SETUP**

Goal: Leverage unlabeled dataset by embedding semi-supervision in the inner and outer loop of MAML.

Semi-supervised few-shot learning setup

- During meta-training, the goal is to iterate overs tasks $T_1 \cdot \cdot \cdot T_N$ and meta-learn a parametrization using the support set S, query set Q, and the unlabeled set U.
- During meta-testing, the learned parametrization is used as an initialization and a model is trained using the S and U to perform well on Q.
- In any task, U may contain data points that are out-of-distribution.

The PLATINUM Framework

- For a specific task T_i , in each inner loop and outer loop gradient update step, we select a subset from the unlabeled set by maximizing the per-class SMI function.
- In each inner loop step, the selected subset A_i^S and support set S_i are used to update model parameters ϕ_i .
- In the outer-loop of the meta-training stage, another subset A_i^q will be selected after inner loop selection according to the updated model parameters ϕ_i . Meta-parameters θ would be updated based on A_i^q and the query set Q_i .

RESULTS

Semi-Supervised Few-Shot Classification: minilmageNet, $\rho=0.01$.					tiered ImageNet, $\rho = 0.01$.					
	1-s	hot	5-s	hot		1-s	hot	5-s	hot	
Methods	w/o OOD	w/ OOD	w/o OOD	w/OOD	Methods	w/o OOD	w/ OOD	w/o OOD	w/ OOD	
Soft k-Means (Ren et al., 2018)	24.61±0.64	23.57 ± 0.63	38.20±1.64	38.07 ± 1.53	Soft k-Means (Ren et al., 2018)	27.53±0.74	$27.04{\scriptstyle\pm0.76}$	44.63±1.19	$44.78{\scriptstyle\pm1.05}$	
Soft k-Means+Cluster (Ren et al., 2018)	15.76 ± 0.59	9.77 ± 0.51	33.65±1.53	30.47 ± 1.42	Soft k-Means+Cluster (Ren et al., 2018)	30.48±0.84	31.30 ± 0.86	46.93±1.18	49.33 ± 1.17	
Masked Soft k-Means (Ren et al., 2018)	25.48 ± 0.67	25.03 ± 0.68	39.33±1.55	38.48 ± 1.74	Masked Soft k-Means (Ren et al., 2018)	33.85±0.84	32.99 ± 0.87	47.63±1.12	47.35 ± 1.08	
TPN-semi (Liu et al., 2019)	40.25 ± 0.92	26.70 ± 0.98	46.27±1.67	36.81 ± 0.87	TPN-semi (Liu et al., 2019)	44.13±1.04	31.83 ± 1.09	58.53±1.57	56.92 ± 1.67	
LST(small) (Li et al., 2019)	37.65 ± 0.78	37.82 ± 0.91	61.50±0.92	57.67 ± 0.85	LST(small) (Li et al., 2019)	42.86±0.86	42.33 ± 0.95	59.55 ± 0.92	58.82 ± 0.93	
LST(large) (Li et al., 2019)	41.36±0.98	$39.32{\scriptstyle\pm0.95}$	61.51±0.98	59.24 ± 0.95	LST(large) (Li et al., 2019)	44.34±0.97	44.59 ± 0.99	61.45 ± 0.90	$60.75{\scriptstyle\pm0.93}$	
MAML [†] (Finn et al., 2017)	35.26 ± 0.85	35.26 ± 0.85	60.22±0.83	60.20 ± 0.83	MAML [†] (Finn et al., 2017)	41.96±0.84	41.96 ± 0.84	61.30±0.85	61.30 ± 0.85	
VAT (Miyato et al., 2018)	36.55 ± 0.86	34.03 ± 0.84	61.60±0.83	61.24 ± 0.88	VAT (Miyato et al., 2018)	41.52±0.82	41.51 ± 0.79	59.98±0.83	60.01 ± 0.87	
PL (Lee et al., 2013)	37.71±0.94	$35.16{\scriptstyle\pm0.85}$	60.64±0.92	60.31 ± 0.87	PL (Lee et al., 2013)	41.22±0.89	$40.87{\scriptstyle\pm0.83}$	61.70±0.77	$60.57{\scriptstyle\pm0.87}$	

42.57±0.93 63.62±0.95 **63.54**±0.94

42.27 ± 0.95 **41.53** ± 0.97 **63.80** ± 0.92 **63.44** ± 0.99

	1-s	hot	5-shot		
Methods	w/o OOD	w/ OOD	w/o OOD	w/ OOD	
Soft k-Means (Ren et al., 2018)	50.09±0.45	48.70±0.32	64.59±0.28	63.55±0.28	
Soft k-Means Cluster (Ren et al., 2018)	49.03±0.24	48.86 ± 0.32	63.08±0.18	61.27 ± 0.24	
Masked Soft k-Means (Ren et al., 2018)	50.41±0.31	49.04 ± 0.31	64.39±0.24	62.96 ± 0.14	
TPN-semi (Liu et al., 2019)	52.78 ±0.27	50.43 ± 0.84	66.42±0.21	64.95 ± 0.73	
GCMI (large, ours)	51.35 ±0.93	50.85 ±0.89	66.65 ±0.75	66.66 ±0.74	
FLMI (large, ours)	51.06±0.96	49.83 ± 0.91	67.34 ±0.72	66.20 ± 0.73	

GCMI (ours)

FLMI (ours)

- Embedding semi-supervision on the top of firstorder MAML could boost the performance.
- Especially for small ratio of labeled to unlabeled samples, also works for high labeled ratio.

Ablation

 Comparison under different number of OOD classes in the Unlabeled Set

FLMI (ours)

45.55±0.90 63.67±0.83 **62.59**±0.85

46.19 ± 0.94 **63.75** ± 0.87 **62.19** ± 0.91

• w/ vs. w/o outer selection

• Left: 1-shot, Right: 5-shot.

Semi-supervision in Inner and Outer Loop

```
for each task \mathcal{T}_i = \{\mathcal{S}_i, \mathcal{Q}_i, \mathcal{U}_i\}, i \in [b] do
      Initialize model parameters \phi_i \leftarrow \theta
      for each inner step t do
             \mathcal{P}_{\mathcal{U}_i} \leftarrow \phi_i(\mathcal{U}_i)
            \mathcal{X} \leftarrow \text{Cosine\_Similarity}(\mathcal{P}_{\mathcal{U}_i}, \{\mathcal{P}_{\mathcal{S}_i} \cup \mathcal{P}_{\mathcal{Q}_i}\})
            Instantiate a submodular function f based on \mathcal{X}.
              /* inner loop selection */
           \mathcal{A}_{it}^s \leftarrow \operatorname{argmax}_{\mathcal{A}_{it}^s \subseteq \mathcal{U}_i, |\mathcal{A}_{it}^s| \leq B_{in}} I_f(\mathcal{A}_{it}^s; \mathcal{S}_i \cup \mathcal{Q}_i)
            \phi_i \leftarrow \phi_i - \nabla_{\phi} L(\theta; \mathcal{S}_i \cup \mathcal{A}_i^s)
             \mathcal{A}_{i}^{s} \leftarrow \mathcal{A}_{i}^{s} \cup \mathcal{A}_{it}^{s}
      end for
      \mathcal{P}_{\mathcal{U}_i \setminus \mathcal{A}_i^s} \leftarrow \phi_i(\mathcal{U}_i \setminus \mathcal{A}_i^s)
      \mathcal{X} \leftarrow \text{Cosine\_Similarity}(\mathcal{P}_{\mathcal{U}_i \setminus \mathcal{A}_i^s}, \{\mathcal{P}_{\mathcal{S}_i} \cup \mathcal{P}_{\mathcal{Q}_i}\})
        /*outer loop selection*/
      \mathcal{A}_{i}^{q} \leftarrow \operatorname{argmax}_{\mathcal{A}_{i}^{q} \subseteq \mathcal{U}_{i} \setminus \mathcal{A}_{i}^{s}, |\mathcal{A}_{i}^{q}| \leq B_{\operatorname{out}}} I_{f}(\mathcal{A}_{i}^{q}; \mathcal{S}_{i} \cup \mathcal{Q}_{i})
 end for
  /*meta update (outer loop) */
Obtain \theta^{(t+1)} by using \{Q_i \cup A_i^q\}_{i=1}^b
```

CONCLUSIONS

- PLATINUM: A novel semi-supervised modelagnostic meta-learning framework.
- It leverages submodular mutual information functions as per-class acquisition functions to select more data from unlabeled data in the inner and outer loop of meta-learning.
- Meta-learning based SSFSL experiments on the top of first-order MAML validates the effectiveness, especially for small ratio of labeled to unlabeled samples.
- Future work: involve some diversity measurements for the selected subset to do quantitative analysis

PAPER

Get the paper for more technical details and results.