PLATINUM: Semi-Supervised Model Agnostic Meta-Learning using Submodular Mutual Information Changbin Li*, Suraj Kothawade*, Feng Chen, Rishabh Iyer ## INTRODUCTION - Unlabeled examples could also be used to boost the performance in semi-supervised learning. Similarly can we use unlabeled information in semi-supervised few shot learning (SSFSL)? - Current SSFSL: 1) transfer-learning based (pretrained features); 2) meta-learning based. - Submodular information measures have been used as acquisition functions for active learning in scenarios with class imbalance, redundancy and OOD data. - In this work, we propose PLATINUM (semi-suPervised mode**L** Agnostic me**T**a learn**I**ng usi**N**g s**U**bmodular Mutual information), a novel semi-supervised model agnostic meta learning framework that uses the submodular mutual information (SMI) functions to boost the performance of FSC. - We study the performance of PLATINUM in two scenarios: 1) where the unlabeled data points belong to the same set of classes as the labeled set of a certain episode. 2) where there exist out-of-distribution classes that do not belong to the labeled set. #### **MOTIVATION** and **SETUP** Goal: Leverage unlabeled dataset by embedding semi-supervision in the inner and outer loop of MAML. # Semi-supervised few-shot learning setup - During meta-training, the goal is to iterate overs tasks $T_1 \cdot \cdot \cdot T_N$ and meta-learn a parametrization using the support set S, query set Q, and the unlabeled set U. - During meta-testing, the learned parametrization is used as an initialization and a model is trained using the S and U to perform well on Q. - In any task, U may contain data points that are out-of-distribution. ## The PLATINUM Framework - For a specific task T_i , in each inner loop and outer loop gradient update step, we select a subset from the unlabeled set by maximizing the per-class SMI function. - In each inner loop step, the selected subset A_i^S and support set S_i are used to update model parameters ϕ_i . - In the outer-loop of the meta-training stage, another subset A_i^q will be selected after inner loop selection according to the updated model parameters ϕ_i . Meta-parameters θ would be updated based on A_i^q and the query set Q_i . # **RESULTS** | Semi-Supervised Few-Shot Classification: minilmageNet, $\rho=0.01$. | | | | | tiered ImageNet, $\rho = 0.01$. | | | | | | |--|------------------|------------------------------|------------|------------------|---|------------|------------------------------|------------------|------------------------------|--| | | 1-s | hot | 5-s | hot | | 1-s | hot | 5-s | hot | | | Methods | w/o OOD | w/ OOD | w/o OOD | w/OOD | Methods | w/o OOD | w/ OOD | w/o OOD | w/ OOD | | | Soft k-Means (Ren et al., 2018) | 24.61±0.64 | 23.57 ± 0.63 | 38.20±1.64 | 38.07 ± 1.53 | Soft k-Means (Ren et al., 2018) | 27.53±0.74 | $27.04{\scriptstyle\pm0.76}$ | 44.63±1.19 | $44.78{\scriptstyle\pm1.05}$ | | | Soft k-Means+Cluster (Ren et al., 2018) | 15.76 ± 0.59 | 9.77 ± 0.51 | 33.65±1.53 | 30.47 ± 1.42 | Soft k-Means+Cluster (Ren et al., 2018) | 30.48±0.84 | 31.30 ± 0.86 | 46.93±1.18 | 49.33 ± 1.17 | | | Masked Soft k-Means (Ren et al., 2018) | 25.48 ± 0.67 | 25.03 ± 0.68 | 39.33±1.55 | 38.48 ± 1.74 | Masked Soft k-Means (Ren et al., 2018) | 33.85±0.84 | 32.99 ± 0.87 | 47.63±1.12 | 47.35 ± 1.08 | | | TPN-semi (Liu et al., 2019) | 40.25 ± 0.92 | 26.70 ± 0.98 | 46.27±1.67 | 36.81 ± 0.87 | TPN-semi (Liu et al., 2019) | 44.13±1.04 | 31.83 ± 1.09 | 58.53±1.57 | 56.92 ± 1.67 | | | LST(small) (Li et al., 2019) | 37.65 ± 0.78 | 37.82 ± 0.91 | 61.50±0.92 | 57.67 ± 0.85 | LST(small) (Li et al., 2019) | 42.86±0.86 | 42.33 ± 0.95 | 59.55 ± 0.92 | 58.82 ± 0.93 | | | LST(large) (Li et al., 2019) | 41.36±0.98 | $39.32{\scriptstyle\pm0.95}$ | 61.51±0.98 | 59.24 ± 0.95 | LST(large) (Li et al., 2019) | 44.34±0.97 | 44.59 ± 0.99 | 61.45 ± 0.90 | $60.75{\scriptstyle\pm0.93}$ | | | MAML [†] (Finn et al., 2017) | 35.26 ± 0.85 | 35.26 ± 0.85 | 60.22±0.83 | 60.20 ± 0.83 | MAML [†] (Finn et al., 2017) | 41.96±0.84 | 41.96 ± 0.84 | 61.30±0.85 | 61.30 ± 0.85 | | | VAT (Miyato et al., 2018) | 36.55 ± 0.86 | 34.03 ± 0.84 | 61.60±0.83 | 61.24 ± 0.88 | VAT (Miyato et al., 2018) | 41.52±0.82 | 41.51 ± 0.79 | 59.98±0.83 | 60.01 ± 0.87 | | | PL (Lee et al., 2013) | 37.71±0.94 | $35.16{\scriptstyle\pm0.85}$ | 60.64±0.92 | 60.31 ± 0.87 | PL (Lee et al., 2013) | 41.22±0.89 | $40.87{\scriptstyle\pm0.83}$ | 61.70±0.77 | $60.57{\scriptstyle\pm0.87}$ | | **42.57**±0.93 63.62±0.95 **63.54**±0.94 **42.27** ± 0.95 **41.53** ± 0.97 **63.80** ± 0.92 **63.44** ± 0.99 | | 1-s | hot | 5-shot | | | |---|--------------------|--------------------|--------------------|--------------------|--| | Methods | w/o OOD | w/ OOD | w/o OOD | w/ OOD | | | Soft k-Means (Ren et al., 2018) | 50.09±0.45 | 48.70±0.32 | 64.59±0.28 | 63.55±0.28 | | | Soft k-Means Cluster (Ren et al., 2018) | 49.03±0.24 | 48.86 ± 0.32 | 63.08±0.18 | 61.27 ± 0.24 | | | Masked Soft k-Means (Ren et al., 2018) | 50.41±0.31 | 49.04 ± 0.31 | 64.39±0.24 | 62.96 ± 0.14 | | | TPN-semi (Liu et al., 2019) | 52.78 ±0.27 | 50.43 ± 0.84 | 66.42±0.21 | 64.95 ± 0.73 | | | GCMI (large, ours) | 51.35 ±0.93 | 50.85 ±0.89 | 66.65 ±0.75 | 66.66 ±0.74 | | | FLMI (large, ours) | 51.06±0.96 | 49.83 ± 0.91 | 67.34 ±0.72 | 66.20 ± 0.73 | | GCMI (ours) FLMI (ours) - Embedding semi-supervision on the top of firstorder MAML could boost the performance. - Especially for small ratio of labeled to unlabeled samples, also works for high labeled ratio. # **Ablation** Comparison under different number of OOD classes in the Unlabeled Set FLMI (ours) 45.55±0.90 63.67±0.83 **62.59**±0.85 **46.19** ± 0.94 **63.75** ± 0.87 **62.19** ± 0.91 • w/ vs. w/o outer selection • Left: 1-shot, Right: 5-shot. # Semi-supervision in Inner and Outer Loop ``` for each task \mathcal{T}_i = \{\mathcal{S}_i, \mathcal{Q}_i, \mathcal{U}_i\}, i \in [b] do Initialize model parameters \phi_i \leftarrow \theta for each inner step t do \mathcal{P}_{\mathcal{U}_i} \leftarrow \phi_i(\mathcal{U}_i) \mathcal{X} \leftarrow \text{Cosine_Similarity}(\mathcal{P}_{\mathcal{U}_i}, \{\mathcal{P}_{\mathcal{S}_i} \cup \mathcal{P}_{\mathcal{Q}_i}\}) Instantiate a submodular function f based on \mathcal{X}. /* inner loop selection */ \mathcal{A}_{it}^s \leftarrow \operatorname{argmax}_{\mathcal{A}_{it}^s \subseteq \mathcal{U}_i, |\mathcal{A}_{it}^s| \leq B_{in}} I_f(\mathcal{A}_{it}^s; \mathcal{S}_i \cup \mathcal{Q}_i) \phi_i \leftarrow \phi_i - \nabla_{\phi} L(\theta; \mathcal{S}_i \cup \mathcal{A}_i^s) \mathcal{A}_{i}^{s} \leftarrow \mathcal{A}_{i}^{s} \cup \mathcal{A}_{it}^{s} end for \mathcal{P}_{\mathcal{U}_i \setminus \mathcal{A}_i^s} \leftarrow \phi_i(\mathcal{U}_i \setminus \mathcal{A}_i^s) \mathcal{X} \leftarrow \text{Cosine_Similarity}(\mathcal{P}_{\mathcal{U}_i \setminus \mathcal{A}_i^s}, \{\mathcal{P}_{\mathcal{S}_i} \cup \mathcal{P}_{\mathcal{Q}_i}\}) /*outer loop selection*/ \mathcal{A}_{i}^{q} \leftarrow \operatorname{argmax}_{\mathcal{A}_{i}^{q} \subseteq \mathcal{U}_{i} \setminus \mathcal{A}_{i}^{s}, |\mathcal{A}_{i}^{q}| \leq B_{\operatorname{out}}} I_{f}(\mathcal{A}_{i}^{q}; \mathcal{S}_{i} \cup \mathcal{Q}_{i}) end for /*meta update (outer loop) */ Obtain \theta^{(t+1)} by using \{Q_i \cup A_i^q\}_{i=1}^b ``` ## CONCLUSIONS - PLATINUM: A novel semi-supervised modelagnostic meta-learning framework. - It leverages submodular mutual information functions as per-class acquisition functions to select more data from unlabeled data in the inner and outer loop of meta-learning. - Meta-learning based SSFSL experiments on the top of first-order MAML validates the effectiveness, especially for small ratio of labeled to unlabeled samples. - Future work: involve some diversity measurements for the selected subset to do quantitative analysis #### **PAPER** Get the paper for more technical details and results.