

SIMILAR: Submodular Information Measures Based Active Learning In Realistic Scenarios

NEURAL INFORMATION PROCESSING SYSTEMS

Suraj Kothawade, Nathan Beck, Krishnateja Killamsetty, Rishabh Iyer

INTRODUCTION

- Active learning (AL) has proven to be useful for minimizing labeling costs by selecting the most informative samples.
- However, existing AL methods do not work well in realistic scenarios such as imbalance or rare classes, out-of-distribution (OOD) data in the unlabeled set, and redundancy.
- We propose *SIMILAR* using Submodular Mutual Information Measures (SIM). *SIMILAR* acts as a one-stop solution for AL.
- We show that SIMILAR significantly outperforms existing AL algorithms by as much as ≈5%-18% in the case of rare classes and ≈5%-10% in the case of OOD data on multiple image classification datasets.

PROBLEM FORMULATION

Goal: A unified active learning framework that works for a broad spectrum of realistic scenarios.

- The Submodular Conditional Mutual Information (SCMI) is defined as $I_f(A;Q|P) = f(A \cup P) + f(Q \cup P) f(A \cup Q \cup P) f(P)$. It jointly models the similarity between A and Q, and their dissimilarity with P.
- Depending on the realistic scenario, we instantiate SCMI with appropriate choices of Q and P as follows:

Function	Setting	Realistic Scenario
Submodular	$\mathcal{Q} \leftarrow \mathcal{U}, \mathcal{P} \leftarrow \emptyset$	Standard AL
SMI	$\mathcal{Q} \leftarrow \mathcal{Q}, \mathcal{P} \leftarrow \emptyset$	Imbalance, OOD
SCG	$\mathcal{Q} \leftarrow \mathcal{U}, \mathcal{P} \leftarrow \mathcal{P}$	Redundancy
SCMI	$\mathcal{Q}\leftarrow\mathcal{Q},\mathcal{P}\leftarrow\mathcal{P}$	OOD

To find an optimal subset we optimize:

 $\max_{A\subseteq U, |A|\leq B} I_f(A;Q|P)$

Application of SIMILAR to realistic scenarios

Motivating scenarios for realistic active learning and illustration of appropriate choices of Q and P

- SIMILAR finds rare digits $5.8 \in U$ by optimizing the SMI function $I_f(A;R)$ with R containing 5.8 as queries.
- SIMILAR selects samples from U which are diverse among themselves and also diverse w.r.t those in L by optimizing f(A|L) (here, we want to avoid digits $0,1 \in U$ because they are present in L)
- SIMILAR selects digits (in-distribution) and avoid alphabets (out-of-distribution) in U by optimizing $I_f(A; I|O)$, where I are ID labeled points and O are OOD points selected so far.

RESULTS

SIMILAR significantly outperforms existing active learning algorithms by as much as 5%-18% in the case of rare classes and 5%-10% in the case of out-of-distribution data on CIFAR-10 image classification.

SIMILAR: Unified AL Framework

Require: Initial Labeled set of data points: \mathcal{L} , large unlabeled dataset: \mathcal{U} , Loss function \mathcal{H} for learning model \mathcal{M} , batch size: B, number of selection rounds: N

- 1: **for** selection round i = 1 : N **do**
- 2: Train model \mathcal{M} with loss \mathcal{H} on the current labeled set \mathcal{L} and obtain parameters θ
- Using model parameters θ_i , compute gradients using hypothesized labels $\{\nabla_{\theta}\mathcal{H}(x_j,\hat{y_j},\theta), \forall j \in \mathcal{U}\}$ and obtain a similarity matrix X.
- 4: Instantiate a submodular function f based on X.
- 5: $A_i \leftarrow \operatorname{argmax}_{A \subseteq \mathcal{U}, |A| \leq B} I_f(A; \mathcal{Q}|\mathcal{P})$ (Optimize SCMI with an appropriate choice of \mathcal{Q} and \mathcal{P} , see Tab. 1)
- 6: Get labels $L(A_i)$ for batch A_i and $\mathcal{L} \leftarrow \mathcal{L} \cup L(A_i)$, $\mathcal{U} \leftarrow \mathcal{U} A_i$
- 7: end for
- 8: Return trained model \mathcal{M} and parameters θ .

CONCLUSIONS

- We demonstrate the effectiveness of SIMILAR in three realistic scenarios for active learning, namely rare classes, redundancy, and out of distribution data.
- Our real-world experiments show that many of the SIM functions (specifically the LOGDET and FL variants) yield 5%-18% gain compared to existing baselines particularly in the rare class scenario and 5%-10% OOD scenarios.

PAPER

Get the paper for more technical details and results:

https://arxiv.org/pdf/2107. 00717.pdf

