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Information Theoretic Concepts

➢ Entropy: Given a set of random variables 𝑋1⋯ ,𝑋𝑛, the Entropy of a subset of 
random variables: 𝐻 𝑋𝐴 = −σ𝑋𝐴

𝑃 𝑋𝐴 log 𝑃 𝑋𝐴 . Note that entropy is 
submodular.
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YES!

This gives us the Submodular Information Measures! 



Submodular Information Measures (SIM)

➢ Given a set of data points 𝑉 = {1,⋯ , 𝑛}, and sets 𝐴, 𝑄 ⊆ 𝑈, the Submodular 
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information of a set of points is 𝐹 𝐴 and 𝐹 is a submodular function.
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Submodular Mutual Information (MI)



Submodular Conditional Gain (CG)



Submodular Conditional Mutual Information 
(CMI)



Guidance from an Auxiliary Set

➢ Guided subset selection requires the guidance to come from an auxiliary set 𝑉′ that 
is held-out from the ground-set 𝑉.

➢ We define the submodular function on Ω = 𝑉 ∪ 𝑉′

➢ The optimization problem is still defined on subsets 𝐴 ⊆ 𝑉

➢ The query/private set can be a subset of 𝑉′. 

➢ The optimization problem is then to maximize 𝐼𝑓(𝐴; 𝑄) given a query set 𝑄 ⊆ 𝑉′, or 
𝑓 𝐴 𝑃 given a private set, P ⊆ 𝑉′.



Modeling Semantics of PRISM

➢ We study characteristics of various PRISM instantiations with different parameters 
on synthetic datasets.

➢ We evaluate them based on the following characteristics:

➢ Query-coverage to be the fraction of queries covered by the subset.

➢ Query-relevance to be the fraction of the subset pertaining to the queries.

➢ Diversity to be the measure of how diverse are the points within the selected 
subset.

➢ Privacy-irrelevance to be the fraction of the subset not matching the private set.
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Results – Targeted Learning
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MI based functions consistently outperform all baselines by ~ 20 − 

30% in terms of average accuracy on target classes.



PRISM’s Unified Framework for 
Guided Summarization

• Footer information

max
𝐴:𝐴⊆𝑘

𝐼𝑓(𝐴; 𝑄|𝑃)

➢Optimizing the CMI function can be viewed as a master optimization problem 

for multiple summarization tasks.

➢Generic summarization: 𝑄 ← 𝑉, 𝑃 ← ∅
➢Query-focused summarization: 𝑄 ← 𝑄, 𝑃 ← ∅
➢Privacy-preserving summarization : 𝑄 ← ∅, 𝑃 ← 𝑃
➢Query-focused and Privacy-preserving summarization : 𝑄 ← 𝑄, 𝑃 ← 𝑃



Parameter Learning in PRISM for 
Guided Summarization

• Footer information

➢For guided summarization, we learn a mixture of PRISM functions (PRISM-

MIX) where the weights and internal parameters are jointly learned.

➢The mixture is learned using a max-margin formulation supervised by 

summaries generated by humans.

➢For generic summarization, we add the standard submodular functions 

modeling representation, diversity, coverage.

➢For query-focused summarization and privacy-preserving summarization, we 

instead use the MI and CG versions of the PRISM functions.

➢During inference, we instantiate the mixture model with the learned 

parameters and maximize it to get the desired summaries.



Results – Guided Summarization

➢Dataset with 14 image collections with 100 images each, and 50-250 human 
summaries per collection.

➢We compare PRISM-MIX with individual components used in the mixture.
➢MIXTURE model uses the same components as PRISM-MIX without learning 

the internal parameters of PRISM functions.



Conclusion

➢ We presented PRISM, a rich class of functions for guided subset 
selection. 

➢ PRISM allows to model a broad spectrum of semantics across query-
relevance, diversity, query-coverage and privacy-irrelevance. 

➢ We demonstrated its effectiveness in targeted learning as well as in 
guided summarization. 

➢ In our paper, we showed that PRISM has interesting connections to 
several past work, further reinforcing its utility.

➢ Through experiments on targeted learning and guided summarization 
for diverse datasets, we empirically verified the superiority of PRISM 
over existing methods.
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