

PRISM: A Rich Class of Parameterized Submodular Information Measures for Guided Subset Selection

Suraj Kothawade*, Vishal Kaushal, Ganesh Ramakrishnan, Jeff Bilmes, Rishabh Iyer

Guided Subset Selection

Examples of Targets

Targeted Learning

Guided Summarization

Submodular Functions

$$f(A \cup V) - f(A) \ge f(B \cup V) - f(B)$$
, if $A \subseteq B$

f = # of distinct colors of balls in the urn.

▶ **Entropy:** Given a set of random variables $X_1 \cdots , X_n$, the Entropy of a **subset** of random variables: $H(X_A) = -\sum_{X_A} P(X_A) \log P(X_A)$. Note that entropy is **submodular.**

- ➤ **Entropy:** Given a set of random variables $X_1 \cdots , X_n$, the Entropy of a **subset** of random variables: $H(X_A) = -\sum_{X_A} P(X_A) \log P(X_A)$. Note that entropy is **submodular.**
- ➤ **Mutual Information:** Given a set of random variables, X_1, \dots, X_n and sets $A, B \subseteq V$, the Mutual Information $I(X_A; X_B) = H(X_A) + H(X_B) H(X_{A \cup B})$

- ➤ **Entropy:** Given a set of random variables $X_1 \cdots , X_n$, the Entropy of a **subset** of random variables: $H(X_A) = -\sum_{X_A} P(X_A) \log P(X_A)$. Note that entropy is **submodular.**
- ➤ Mutual Information: Given a set of random variables, X_1, \dots, X_n and sets $A, B \subseteq V$, the Mutual Information $I(X_A; X_B) = H(X_A) + H(X_B) H(X_{A \cup B})$
- ➤ Conditional Entropy: Given a set of random variables, X_1, \dots, X_n and sets $A, B \subseteq V$, the Conditional Entropy $H(X_A|X_B) = H(X_{A \cup B}) H(X_B)$

- **Entropy:** Given a set of random variables $X_1 \cdots , X_n$, the Entropy of a **subset** of random variables: $H(X_A) = -\sum_{X_A} P(X_A) \log P(X_A)$. Note that entropy is **submodular.**
- ➤ Mutual Information: Given a set of random variables, X_1, \dots, X_n and sets $A, B \subseteq V$, the Mutual Information $I(X_A; X_B) = H(X_A) + H(X_B) H(X_{A \cup B})$
- ➤ Conditional Entropy: Given a set of random variables, X_1, \dots, X_n and sets $A, B \subseteq V$, the Conditional Entropy $H(X_A|X_B) = H(X_{A \cup B}) H(X_B)$
- ➤ Conditional Mutual Information: Given a set of random variables, X_1, \dots, X_n and sets $A, B, C \subseteq V$, the Conditional Mutual Information $I(X_A; X_B | X_C) = H(X_A | X_C) + H(X_B | X_C) H(X_{A \cup B} | X_C)$

Can we replace *H* with any submodular function?

Can we replace *H* with any submodular function?

YES!

This gives us the Submodular Information Measures!

 \triangleright Given a set of data points $V=\{1,\cdots,n\}$, and sets $A,Q\subseteq U$, the **Submodular Mutual Information (SMI)** $I_F(A;Q)=F(A)+F(Q)-F(A\cup Q)$, where the information of a **set** of points is F(A) and F is a submodular function.

- \succ Given a set of data points $V=\{1,\cdots,n\}$, and sets $A,Q\subseteq U$, the **Submodular Mutual Information (SMI)** $I_F(A;Q)=F(A)+F(Q)-F(A\cup Q)$, where the information of a **set** of points is F(A) and F is a submodular function.
- \succ Given a set of data points $V=\{1,\cdots,n\}$, and sets $A,P\subseteq U$, the **Submodular** Conditional Gain (SCG) is $F(A|P)=F(A\cup P)-F(P)$.

- \triangleright Given a set of data points $V=\{1,\cdots,n\}$, and sets $A,Q\subseteq U$, the **Submodular Mutual Information (SMI)** $I_F(A;Q)=F(A)+F(Q)-F(A\cup Q)$, where the information of a **set** of points is F(A) and F is a submodular function.
- \triangleright Given a set of data points $V=\{1,\cdots,n\}$, and sets $A,P\subseteq U$, the **Submodular** Conditional Gain (SCG) is $F(A|P)=F(A\cup P)-F(P)$.
- ➤ Given a set of data points $V = \{1, \dots, n\}$, and sets $A, Q, P \subseteq U$, the **Submodular** Conditional Mutual Information (SCMI) is $I_F(A; Q|P) = F(A \cup P) + F(Q \cup P) F(A \cup Q \cup P) F(P)$.

(a) Instantiations of MI functions

MI	$I_f(\mathcal{A};\mathcal{Q})$
FLVMI	$\sum_{i \in \mathcal{V}} \min(\max_{j \in \mathcal{A}} S_{ij}, \eta \max_{j \in \mathcal{Q}} S_{ij})$
FLQMI	$\sum_{i \in \mathcal{Q}} \max_{j \in \mathcal{A}} S_{ij} + \eta \sum_{i \in \mathcal{A}} \max_{j \in \mathcal{Q}} S_{ij}$
GСMI	$2\lambda \sum_{i \in \mathcal{A}} \sum_{j \in \mathcal{Q}} S_{ij}$
LOGDETMI	$\log \det(S_{\mathcal{A}}) - \log \det(S_{\mathcal{A}} - \eta^2 S_{\mathcal{A}, \mathcal{Q}} S_{\mathcal{Q}}^{-1} S_{\mathcal{A}, \mathcal{Q}}^T)$
COM	$\eta \sum_{i \in \mathcal{A}} \psi(\sum_{j \in \mathcal{Q}} S_{ij}) + \sum_{j \in \mathcal{Q}} \psi(\sum_{i \in \mathcal{A}} S_{ij})$

(b) Instantiations of CG and CMI functions

CG	$f(A \mathcal{P})$
FLCG	$\sum_{i \in \mathcal{V}} \max(\max_{j \in \mathcal{A}} S_{ij} - \max_{j \in \mathcal{P}} S_{ij}, 0)$
LOGDETCG	$\log \det(S_{\mathcal{A}} - \nu^2 S_{\mathcal{A}, \mathcal{P}} S_{\mathcal{P}}^{-1} S_{\mathcal{A}, \mathcal{P}}^T)$
Gccg	$f(\mathcal{A}) - 2\lambda\nu \sum_{i \in \mathcal{A}, j \in \mathcal{P}} S_{ij}$

CMI	$I_f(\mathcal{A};\mathcal{Q} \mathcal{P})$
FLCMI	$\sum_{i \in \mathcal{V}} \max(\min(\max_{j \in \mathcal{A}} S_{ij}, \max_{j \in \mathcal{Q}} S_{ij}) - \max_{j \in \mathcal{P}} S_{ij}, 0)$
LOGDETCMI	$\log \frac{\det(I - S_{\mathcal{P}}^{-1} S_{\mathcal{P}}, \mathcal{Q} S_{\mathcal{Q}}^{-1} S_{\mathcal{P}, \mathcal{Q}}^{T})}{\det(I - S_{\mathcal{A} \cup \mathcal{P}}^{-1} S_{\mathcal{A} \cup \mathcal{P}}, Q S_{\mathcal{Q}}^{-1} S_{\mathcal{A} \cup \mathcal{P}, Q}^{T})}$

Submodular Mutual Information (MI)

MI	$I_f(\mathcal{A};\mathcal{Q})$
FLVMI	$\sum_{i \in \mathcal{V}} \min(\max_{j \in \mathcal{A}} S_{ij}, \eta \max_{j \in \mathcal{Q}} S_{ij})$
FLQMI	$\sum_{i \in \mathcal{Q}} \max_{j \in \mathcal{A}} S_{ij} + \eta \sum_{i \in \mathcal{A}} \max_{j \in \mathcal{Q}} S_{ij}$
GCMI	$2\lambda \sum_{i \in \mathcal{A}} \sum_{j \in \mathcal{Q}} S_{ij}$
LOGDETMI	$\log \det(S_{\mathcal{A}}) - \log \det(S_{\mathcal{A}} - \eta^2 S_{\mathcal{A}, \mathcal{Q}} S_{\mathcal{Q}}^{-1} S_{\mathcal{A}, \mathcal{Q}}^T)$
COM	$\eta \sum_{i \in \mathcal{A}} \psi(\sum_{j \in \mathcal{Q}} S_{ij}) + \sum_{j \in \mathcal{Q}} \psi(\sum_{i \in \mathcal{A}} S_{ij})$

Submodular Conditional Gain (CG)

CG	$f(\mathcal{A} \mathcal{P})$
FLCG	$\sum_{i \in \mathcal{V}} \max(\max_{j \in \mathcal{A}} S_{ij} - \max_{j \in \mathcal{P}} S_{ij}, 0)$
LOGDETCG	$\log \det(S_{\mathcal{A}} - \nu^2 S_{\mathcal{A}, \mathcal{P}} S_{\mathcal{P}}^{-1} S_{\mathcal{A}, \mathcal{P}}^T)$
GCCG	$f(\mathcal{A}) - 2\lambda\nu \sum_{i \in \mathcal{A}, j \in \mathcal{P}} S_{ij}$

Submodular Conditional Mutual Information (CMI)

CMI	$I_f(\mathcal{A};\mathcal{Q} \mathcal{P})$
FLCMI	$\sum_{i \in \mathcal{V}} \max(\min(\max_{j \in \mathcal{A}} S_{ij}, \max_{j \in \mathcal{Q}} S_{ij}) - \max_{j \in \mathcal{P}} S_{ij}, 0)$
LOGDETCMI	$\log \frac{\det(I - S_{\mathcal{P}}^{-1} S_{\mathcal{P}, \mathcal{Q}} S_{\mathcal{Q}}^{-1} S_{\mathcal{P}, \mathcal{Q}}^{T})}{\det(I - S_{\mathcal{A} \cup \mathcal{P}}^{-1} S_{\mathcal{A} \cup \mathcal{P}, Q} S_{\mathcal{Q}}^{-1} S_{\mathcal{A} \cup \mathcal{P}, Q}^{T})}$

Guidance from an Auxiliary Set

- \gt Guided subset selection requires the *guidance* to come from an auxiliary set V' that is held-out from the ground-set V.
- \succ We define the submodular function on $\Omega = V \cup V'$
- \succ The optimization problem is still defined on subsets $A \subseteq V$
- \triangleright The query/private set can be a subset of V'.
- \succ The optimization problem is then to maximize $I_f(A;Q)$ given a query set $Q\subseteq V'$, or f(A|P) given a private set, $P\subseteq V'$.

- > We study characteristics of various PRISM instantiations with different parameters on synthetic datasets.
- We evaluate them based on the following characteristics:
- > Query-coverage to be the fraction of queries covered by the subset.
- > Query-relevance to be the fraction of the subset pertaining to the queries.
- Diversity to be the measure of how diverse are the points within the selected subset.
- > Privacy-irrelevance to be the fraction of the subset not matching the private set.

- 1: Train model with loss \mathcal{L} on labeled set \mathcal{E} and obtain parameters θ_E
- 2: Compute the gradients $\{\nabla_{\theta_E} \mathcal{L}(x_i, y_i), i \in \mathcal{U}\}$ and $\{\nabla_{\theta_E} \mathcal{L}(x_i, y_i), i \in \mathcal{T}\}$.
- 3: Using the gradients, compute the similarity kernels and define a submodular function f and diversity function g
- 4: $\hat{\mathcal{A}} \leftarrow \max_{\mathcal{A} \subseteq \mathcal{U}, |\mathcal{A}| \leq k} I_f(\mathcal{A}; T) + \gamma g(\mathcal{A})$
- 5: Obtain the labels of the elements in \mathcal{A}^* : $L(\hat{\mathcal{A}})$
- 6: Train a model on the combined labeled set $\mathcal{E} \cup L(\hat{\mathcal{A}})$

- 1: Train model with loss \mathcal{L} on labeled set \mathcal{E} and obtain parameters θ_E
- 2: Compute the gradients $\{\nabla_{\theta_E} \mathcal{L}(x_i, y_i), i \in \mathcal{U}\}$ and $\{\nabla_{\theta_E} \mathcal{L}(x_i, y_i), i \in \mathcal{T}\}$.
- 3: Using the gradients, compute the similarity kernels and define a submodular function f and diversity function g
- 4: $\hat{\mathcal{A}} \leftarrow \max_{\mathcal{A} \subseteq \mathcal{U}, |\mathcal{A}| \leq k} I_f(\mathcal{A}; T) + \gamma g(\mathcal{A})$
- 5: Obtain the labels of the elements in \mathcal{A}^* : $L(\hat{\mathcal{A}})$
- 6: Train a model on the combined labeled set $\mathcal{E} \cup L(\hat{\mathcal{A}})$

- 1: Train model with loss \mathcal{L} on labeled set \mathcal{E} and obtain parameters θ_E
- 2: Compute the gradients $\{\nabla_{\theta_E} \mathcal{L}(x_i, y_i), i \in \mathcal{U}\}$ and $\{\nabla_{\theta_E} \mathcal{L}(x_i, y_i), i \in \mathcal{T}\}$.

- 4: $\hat{\mathcal{A}} \leftarrow \max_{\mathcal{A} \subseteq \mathcal{U}, |\mathcal{A}| \leq k} I_f(\mathcal{A}; T) + \gamma g(\mathcal{A})$
- 5: Obtain the labels of the elements in \mathcal{A}^* : $L(\hat{\mathcal{A}})$
- 6: Train a model on the combined labeled set $\mathcal{E} \cup L(\hat{\mathcal{A}})$

- 1: Train model with loss \mathcal{L} on labeled set \mathcal{E} and obtain parameters θ_E
- 2: Compute the gradients $\{\nabla_{\theta_E} \mathcal{L}(x_i, y_i), i \in \mathcal{U}\}$ and $\{\nabla_{\theta_E} \mathcal{L}(x_i, y_i), i \in \mathcal{T}\}$.
- 3: Using the gradients, compute the similarity kernels and define a submodular function f and diversity function g

- 4: $\hat{\mathcal{A}} \leftarrow \max_{\mathcal{A} \subset \mathcal{U}, |\mathcal{A}| < k} I_f(\mathcal{A}; T) + \gamma g(\mathcal{A})$
 - 5: Obtain the labels of the elements in \mathcal{A}^* : $L(\hat{\mathcal{A}})$
 - 6: Train a model on the combined labeled set $\mathcal{E} \cup L(\hat{\mathcal{A}})$

- 1: Train model with loss \mathcal{L} on labeled set \mathcal{E} and obtain parameters θ_E
- 2: Compute the gradients $\{\nabla_{\theta_E} \mathcal{L}(x_i, y_i), i \in \mathcal{U}\}$ and $\{\nabla_{\theta_E} \mathcal{L}(x_i, y_i), i \in \mathcal{T}\}$.
- 3: Using the gradients, compute the similarity kernels and define a submodular function f and diversity function g
- 4: $\hat{\mathcal{A}} \leftarrow \max_{\mathcal{A} \subseteq \mathcal{U}, |\mathcal{A}| \leq k} I_f(\mathcal{A}; T) + \gamma g(\mathcal{A})$

- 5: Obtain the labels of the elements in \mathcal{A}^* : $L(\hat{\mathcal{A}})$
- 6: Train a model on the combined labeled set $\mathcal{E} \cup L(\hat{\mathcal{A}})$

Results – Targeted Learning

MI based functions consistently outperform all baselines by ~ 20 – 30% in terms of average accuracy on target classes.

PRISM's Unified Framework for Guided Summarization

$$\max_{A:A\subseteq k} I_f(A;Q|P)$$

- ➤ Optimizing the CMI function can be viewed as a master optimization problem for multiple summarization tasks.
- \triangleright Generic summarization: $Q \leftarrow V, P \leftarrow \emptyset$
- \triangleright Query-focused summarization: $Q \leftarrow Q, P \leftarrow \emptyset$
- \triangleright Privacy-preserving summarization : $Q \leftarrow \emptyset$, $P \leftarrow P$
- \triangleright Query-focused and Privacy-preserving summarization : $Q \leftarrow Q, P \leftarrow P$

Parameter Learning in PRISM for Guided Summarization

- ➤ For guided summarization, we learn a mixture of PRISM functions (PRISM-MIX) where the weights and internal parameters are jointly learned.
- ➤ The mixture is learned using a max-margin formulation supervised by summaries generated by humans.
- ➤ For generic summarization, we add the standard submodular functions modeling representation, diversity, coverage.
- > For query-focused summarization and privacy-preserving summarization, we instead use the MI and CG versions of the PRISM functions.
- > During inference, we instantiate the mixture model with the learned parameters and maximize it to get the desired summaries.

Results – Guided Summarization

- ➤ Dataset with 14 image collections with 100 images each, and 50-250 human summaries per collection.
- > We compare PRISM-MIX with individual components used in the mixture.
- MIXTURE model uses the same components as PRISM-MIX without learning the internal parameters of PRISM functions.

Conclusion

- > We presented PRISM, a rich class of functions for guided subset selection.
- > PRISM allows to model a broad spectrum of semantics across query-relevance, diversity, query-coverage and privacy-irrelevance.
- > We demonstrated its effectiveness in targeted learning as well as in guided summarization.
- > In our paper, we showed that PRISM has interesting connections to several past work, further reinforcing its utility.
- > Through experiments on targeted learning and guided summarization for diverse datasets, we empirically verified the superiority of PRISM over existing methods.

Thank You

For more details, do visit our poster.