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Submodular Functions
F(AUV) — f(A) > f(BUV) — f(B), if AC B

f = 4 of distinct colors of balls in the urn.



Information Theoretic Concepts

> Entropy: Given a set of random variables X; ---, X,,, the Entropy of a subset of
random variables: H(X,) = — ).y, P(X4) log P(X,). Note that entropy is
submodular.
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Information Theoretic Concepts
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function?



Can we replace H with any submodular function?
YES!

This gives us the Submodular Information Measures!



Submodular Information Measures (SIM)

> Given a set of data points V = {1, :--,n}, and sets 4, Q € U, the Submodular

Mutual Information (SMI) Iz (4; Q) = F(A) + F(Q) — F(A U Q), where the
information of a set of points is F(4) and F is a submodular function.
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Submodular Information Measures (SIM)

(o) Instintations of MI finctions (b) Instantiations of CG and CMI functions

MI 1;(A4; O) CG S(A[P)
FLvMI %:v min IJllea./)‘(.S,J nmax Sij) FLCG 12) max(%aj Sij— mea%cSzj, )
FLQmi ZQ max Sij+ 0 ZA B Sij LOGDETCG | logdet(S4 — v S_A,pSP Si )
1E 1€ ' ’
GCMI 2A Y 3 S Geea f(A) =2 v > S
iEAJERQ i€EAJEP
LOGDETMI | logdet(S.a) — logdet(Sa —n°Sa,055"S% o) CMI If(A' Q\P)
COM 0D (3. Sii)+ . v, Sii)
€4 S8 = S FLCMI >~ max(min(max S;;, max S;;) — max S;;,0)
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det(I—Sz lg s=1sT )
LOGDETCMI log P.e7Q °P, Q
det(I— SALJ'PSAUP QSQ .AL.J'P Q)

lyer at al., ALT 2021



Submodular Mutual Information (Ml)

MI I¢(A; Q)
FLvMI in(max S;;, n max Si;
iévlnln(?léd}l( §>NmBX D,
FLQMI max S;;+ 7 max S, ;
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Submodular Conditional Gain (CG)

CG f(A[P)
FLCG i;\) max(grlea} Sii— g_nea?;c Sii; 0)
LOGDETCG | logdet(Sa — I/QS_A,’PS;ISZLIP)
GCCG f(A) —2 v > S
i€A,JEP




Submodular Conditional Mutual Information

(CMI)
CMI I:(A; Q[P)
FLCMI i S q..) — S0
2 max(min(max Sij, max Sij) — max Sij, 0)
det(I—S-1s s=1sT )
LOGDETCMI log = "p "P.Q79 7P.Q
det{I—SAU'pSALJP,QSQ S.AL.J’P,Q)




Guidance from an Auxiliary Set

> Guided subset selection requires the guidance to come from an auxiliary set V' that
is held-out from the ground-set V.

» We define the submodular functionon Q =V U V'’
> The optimization problem is still defined on subsets A € V
> The query/private set can be a subset of V.

» The optimization problem is then to maximize Ir(4; Q) given a query set < V', or
f(A|P) given a private set, P C V',



Modeling Semantics of PRISM

> We study characteristics of various PRISM instantiations with different parameters
on synthetic datasets.

> We evaluate them based on the following characteristics:
> Query-coverage to be the fraction of queries covered by the subset.
> Query-relevance to be the fraction of the subset pertaining to the queries.

> Diversity to be the measure of how diverse are the points within the selected
subset.

> Privacy-irrelevance to be the fraction of the subset not matching the private set.



Modeling Semantics of PRISM
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Modeling Semantics of PRISM

Query Summarization with FL2MI (n=0.0)
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PRISM for Targeted Learning

‘ Require: Initial Labeled set of Examples: £, large unlabeled dataset: U, A target subset/slice where
we want to improve accuracy: 7, Loss function £ for learning

[: Train model with loss £ on labeled set £ and obtain parameters g

2: Compute the gradients {Vy,_L(x;,y;), 1 € U} and {Vg, L(x;,y;),1 € T}

3: Using the gradients, compute the similarity kernels and define a submodular function f and
diversity function g

4: A+ max Acu,|Al<k I+(A;T) +v9(A)

5: Obtain the labels of the elements in A*: L(.A)

~

6: Train a model on the combined labeled set £ U L(.A)
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MI based functions consistently outperform all baselines by ~ 20 -
30% in terms of average accuracy on target classes.




PRISM’s Unified Framework for
Guided Summarization

max [¢(A; Q[P)

» Optimizing the CMI function can be viewed as a master optimization problem
for multiple summarization tasks.

» Generic summarization: Q « V,P « @

» Query-focused summarization: Q « Q,P « @

» Privacy-preserving summarization : Q « @,P « P

» Query-focused and Privacy-preserving summarization : Q « Q,P « P



Parameter Learning in PRISM for
Guided Summarization

» For guided summarization, we learn a mixture of PRISM functions (PRISM-
MIX) where the weights and internal parameters are jointly learned.

» The mixture Is learned using a max-margin formulation supervised by
summaries generated by humans.

» For generic summarization, we add the standard submodular functions
modeling representation, diversity, coverage.

» For query-focused summarization and privacy-preserving summarization, we
iInstead use the M| and CG versions of the PRISM functions.

» During inference, we instantiate the mixture model with the learned
parameters and maximize it to get the desired summaries.
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» Dataset with 14 image collections with 100 images each, and 50-250 human

summaries per collection.
» We compare PRISM-MIX with individual components used in the mixture.

» MIXTURE model uses the same components as PRISM-MIX without learning
the internal parameters of PRISM functions.



Conclusion

» We presented PRISM, a rich class of functions for guided subset
selection.

> PRISM allows to model a broad spectrum of semantics across query-
relevance, diversity, query-coverage and privacy-irrelevance.

> We demonstrated its effectiveness in targeted learning as well as in
guided summarization.

> In our \oaper, we showed that PRISM has interesting connections to
several past work, further reinforcing its utility.

> Through experiments on targeted learning and guided summarization
for diverse datasets, we empirically verified the superiority of PRISM
over existing methods.



Thank You

@ For more details, do visit our poster.
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