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Rare Classes and Rare Slices

Rare classes and Rare slices in BDD100K
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Motorcycle and bicycle classes have the least number of objects,
thereby making them rare classes, on which the model suffers.
Further, motorcycle/bicycle objects at night are rarer, thereby making
them rare slices on which the model performs the worst.

Pedestrian in the dark snapshot from a
self-driving car**

**Uber self-driving car crash in Tempe, Arizona.



Targeted Active Learning
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Submodular Functions
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Information Theoretic Concepts

» Entropy: Given a set of random variables X; -:-, X;,, the Entropy of a subset of
random variables: H(X,) = — ).y, P(X4) log P(X,). Note that entropy is
submodular.



Information Theoretic Concepts

» Entropy: Given a set of random variables X; -:-, X;,, the Entropy of a subset of
random variables: H(X,) = — ).y, P(X4) log P(X,). Note that entropy is
submodular.

» Mutual Information: Given a set of random variables, X4, -, X,, and sets A, B €
V, the Mutual Information 1(X,; Xg) = H(X,) + H(Xg) — H(X4up)



Can we replace H with any submodular function?



Can we replace H with any submodular function?
YES!

This gives us the Submodular Mutual Information!



How to select efficient subsets in realistic scenarios?

Submodular Information Measures (SIM)

» Given a set of data points V = {1, :--,n}, and sets 4, Q < U, the Submodular

Mutual Information (SMI) I-(4; Q) = F(A) + F(Q) — F(A U Q), where the
information of a set of points is F(4) and F is a submodular function.



How to select efficient subsets?

Submodular Mutual Information (SMI)
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TALISMAN: Targeted Active Learning
Framework for Object Detection

:> Require: Initial labeled set of data points: L, large unlabeled dataset: U, object detection model H for
learning model M, batch size: B, number of selection rounds: N

1. forselectionroundi=1: N do

2 Train model M with loss H on the current labeled set £ and obtain parameters 6;

3 Compute S € RICIXIUl sych that: Squ < TargetedSim(]\/[gi,Iq,Iu), VgeEQ,VueU
4 Instantiate a submodular function f based on S

5. A; < argmax 4cq 4)<p Ir (A; Q) (Greedy maximization of SMI to select a subset A)
6 Get labels L(A;) for batch A; and L « LU L(A;), U « U — A;

7. end for

8. return trained model M and parameters Oy
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Architecture of TALISMAN
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Targeted Similarity Computation
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TALISMAN: Targeted Active Learning
Framework for Object Detection

Require: Initial labeled set of data points: L, large unlabeled dataset: U, object detection model H for
learning model M, batch size: B, number of selection rounds: N
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5. A; < argmax 4cq 4)<p Ir (A; Q) (Greedy maximization of SMI to select a subset A)
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Active Learning with Rare Classes on VOC07+12
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« Active Learning with rare classes on VOCO07+12. Plot (a) shows the average AP of the rare
classes, plots (b-c) show the number of boat and bottle objects selected respectively, plot (d)
shows the mAP on the VOCO07+12 test set.

« We observe that the SMI functions (FLMI, GCMI) outperform other baselines by
average AP of the rare classes.

« SMI functions are in selecting objects for both classes when the query set comprises of
objects for both classes.



Active Learning with Rare Slices on BDD100K
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(a) MC-Night: MC AP on Rare Slice ~  (b) MC-Night: #MC at Night Objects

(c) MC-Night: Full-Test mAP
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» We observe that the SMI functions (FLMI, GCMI) outperform other baselines by = 5% — 14% AP
of the rare class on the rare slice and by = 2% — 3% in terms of mAP

« This improvement is because the SMI functions are able to target the rare slice region by using
the ROI in the query image.



Qualitative Results

A false negative motorcycle at night on the road (left) fixed to a true positive detection (right) using
TALISMAN.




Qualitative Results

A false negative motorcycle at night parked on the road (left) fixed to a true positive detection
(right) using TALISMAN.




Conclusion

g

 In this paper, we present a targeted active learning framework
TALISMAN that enables improving the performance of object detection
models on rare classes and slices.

« We showed the utility of our framework across a variety of real-world
scenarios of rare classes and slices on the PASCAL VOC07+12 and

BDD100K driving dataset.

» Using the SMI functions, we observe a = 5% — 12% gain compared to the
existing baselines.
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