

TALISMAN Targeted Active Learning for Object Detection with Rare Classes and Slices using Submodular Mutual Information

Suraj Kothawade*, Saikat Ghosh, Sumit Shekhar, Yu Xiang, Rishabh Iyer

Active Learning

Rare Classes and Rare Slices

- Motorcycle and bicycle classes have the least number of objects, thereby making them rare classes, on which the model suffers.
- Further, motorcycle/bicycle objects at night are rarer, thereby making them rare slices on which the model performs the worst.

Pedestrian in the dark snapshot from a self-driving car**

^{**}Uber self-driving car crash in Tempe, Arizona.

Targeted Active Learning

Submodular Functions

$$f(A \cup V) - f(A) \ge f(B \cup V) - f(B)$$
, if $A \subseteq B$

f = # of distinct colors of balls in the urn.

Information Theoretic Concepts

Entropy: Given a set of random variables $X_1 \cdots , X_n$, the Entropy of a **subset** of random variables: $H(X_A) = -\sum_{X_A} P(X_A) \log P(X_A)$. Note that entropy is **submodular.**

Information Theoretic Concepts

- **Entropy:** Given a set of random variables $X_1 \cdots , X_n$, the Entropy of a **subset** of random variables: $H(X_A) = -\sum_{X_A} P(X_A) \log P(X_A)$. Note that entropy is **submodular.**
- ➤ Mutual Information: Given a set of random variables, X_1, \dots, X_n and sets $A, B \subseteq V$, the Mutual Information $I(X_A; X_B) = H(X_A) + H(X_B) H(X_{A \cup B})$

Can we replace H with any submodular function?

Can we replace *H* with any submodular function?

YES!

This gives us the Submodular Mutual Information!

Submodular Information Measures (SIM)

Figure Given a set of data points $V = \{1, \dots, n\}$, and sets $A, Q \subseteq U$, the **Submodular Mutual Information (SMI)** $I_F(A; Q) = F(A) + F(Q) - F(A \cup Q)$, where the information of a **set** of points is F(A) and F is a submodular function.

Submodular Mutual Information (SMI)

(a) Instantiations of Submodular functions.

SF	f(A)
FL	$\sum_{i \in \mathcal{U}} \max_{j \in \mathcal{A}} S_{ij}$
GC	$\sum_{i \in \mathcal{A}, j \in \mathcal{U}} S_{ij} -$
	$\sum_{i,j\in\mathcal{A}} S_{ij}$

(b) Instantiations of SMI functions.

SMI	$I_f(\mathcal{A};\mathcal{Q})$
FLMI	$\sum_{i \in \mathcal{Q}} \max_{j \in \mathcal{A}} S_{ij} + \sum_{i \in \mathcal{A}} \max_{j \in \mathcal{Q}} S_{ij}$
GCMI	$2\sum_{i\in\mathcal{A}}\sum_{j\in\mathcal{Q}}S_{ij}$

TALISMAN: Targeted Active Learning Framework for Object Detection

Require: Initial labeled set of data points: \mathcal{L} , large unlabeled dataset: \mathcal{U} , object detection model \mathcal{H} for learning model \mathcal{M} , batch size: B, number of selection rounds: N

- **1. for** selection round i = 1 : N **do**
- **2.** Train model $\mathcal M$ with loss $\mathcal H$ on the current labeled set $\mathcal L$ and obtain parameters θ_i
- 3. Compute $S \in R^{|Q| \times |U|}$ such that: $S_{qu} \leftarrow TargetedSim(\mathcal{M}_{\theta_i}, I_q, I_u), \forall q \in \mathcal{Q}, \forall u \in \mathcal{U}$
- 4. Instantiate a submodular function f based on S
- 5. $\mathcal{A}_i \leftarrow \operatorname{argmax}_{\mathcal{A} \subseteq \mathcal{U}, |\mathcal{A}| \leq B} I_f(\mathcal{A}; \mathcal{Q})$ (Greedy maximization of SMI to select a subset \mathcal{A})
- **6.** Get labels $L(\mathcal{A}_i)$ for batch \mathcal{A}_i and $\mathcal{L} \leftarrow \mathcal{L} \cup L(\mathcal{A}_i)$, $\mathcal{U} \leftarrow \mathcal{U} \mathcal{A}_i$
- 7. end for
- **8.** return trained model \mathcal{M} and parameters θ_N

TALISMAN: Targeted Active Learning Framework for Object Detection

Require: Initial labeled set of data points: \mathcal{L} , large unlabeled dataset: \mathcal{U} , object detection model \mathcal{H} for learning model \mathcal{M} , batch size: B, number of selection rounds: N

- **1. for** selection round i = 1 : N **do**
- **2.** Train model $\mathcal M$ with loss $\mathcal H$ on the current labeled set $\mathcal L$ and obtain parameters θ_i
- \Rightarrow 3. Compute $S \in R^{|Q| \times |U|}$ such that: $S_{qu} \leftarrow TargetedSim(\mathcal{M}_{\theta_i}, I_q, I_u)$, $\forall q \in Q, \forall u \in U$
 - 4. Instantiate a submodular function f based on S
 - 5. $\mathcal{A}_i \leftarrow \operatorname{argmax}_{\mathcal{A} \subseteq \mathcal{U}, |\mathcal{A}| \leq B} I_f(\mathcal{A}; \mathcal{Q})$ (Greedy maximization of SMI to select a subset \mathcal{A})
 - **6.** Get labels $L(\mathcal{A}_i)$ for batch \mathcal{A}_i and $\mathcal{L} \leftarrow \mathcal{L} \cup L(\mathcal{A}_i)$, $\mathcal{U} \leftarrow \mathcal{U} \mathcal{A}_i$
 - 7. end for
 - **8.** return trained model \mathcal{M} and parameters θ_N

Architecture of TALISMAN

Targeted Similarity Computation

TALISMAN: Targeted Active Learning Framework for Object Detection

Require: Initial labeled set of data points: \mathcal{L} , large unlabeled dataset: \mathcal{U} , object detection model \mathcal{H} for learning model \mathcal{M} , batch size: B, number of selection rounds: N

- **1. for** selection round i = 1 : N **do**
- **2.** Train model $\mathcal M$ with loss $\mathcal H$ on the current labeled set $\mathcal L$ and obtain parameters θ_i
- 3. Compute $S \in R^{|Q| \times |U|}$ such that: $S_{qu} \leftarrow TargetedSim(\mathcal{M}_{\theta_i}, I_q, I_u), \forall q \in \mathcal{Q}, \forall u \in \mathcal{U}$
- 4. Instantiate a submodular function f based on S
- \longrightarrow 5. $\mathcal{A}_i \leftarrow \operatorname{argmax}_{\mathcal{A} \subseteq \mathcal{U}, |\mathcal{A}| \leq B} I_f(\mathcal{A}; \mathcal{Q})$ (Greedy maximization of SMI to select a subset \mathcal{A})
 - **6.** Get labels $L(\mathcal{A}_i)$ for batch \mathcal{A}_i and $\mathcal{L} \leftarrow \mathcal{L} \cup L(\mathcal{A}_i)$, $\mathcal{U} \leftarrow \mathcal{U} \mathcal{A}_i$
 - 7. end for
 - **8.** return trained model \mathcal{M} and parameters θ_N

Active Learning with Rare Classes on VOC07+12

- Active Learning with rare classes on VOC07+12. Plot (a) shows the average AP of the rare classes, plots (b-c) show the number of boat and bottle objects selected respectively, plot (d) shows the mAP on the VOC07+12 test set.
- We observe that the SMI functions (FLMI, GCMI) outperform other baselines by ≈ 8% 10% average AP of the rare classes.
- SMI functions are fair in selecting objects for both classes when the query set comprises of objects for both classes.

Active Learning with Rare Slices on BDD100K

- We observe that the SMI functions (FLMI, GCMI) outperform other baselines by ≈ 5% 14% AP of the rare class on the rare slice and by ≈ 2% 3% in terms of mAP
- This improvement is because the SMI functions are able to target the rare slice region by using the ROI in the query image.

Qualitative Results

A false negative motorcycle at night on the road (left) fixed to a true positive detection (right) using TALISMAN.

Qualitative Results

A false negative motorcycle at night parked on the road (left) fixed to a true positive detection (right) using TALISMAN.

Conclusion

- In this paper, we present a targeted active learning framework TALISMAN that enables improving the performance of object detection models on rare classes and slices.
- We showed the utility of our framework across a variety of real-world scenarios of rare classes and slices on the PASCAL VOC07+12 and BDD100K driving dataset.
- Using the SMI functions, we observe a ≈ 5% 12% gain compared to the existing baselines.

Thank You

2